
 

FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; December, 2020: Vol. 5 No. 3 pp. 657 – 665  

 

657 

 SOME SMOOTHING TOOLS FOR CONFIRMED  

CORONAVIRUS CASES IN NIGERIA 
 

J. N. Onyeka-Ubaka1*, R. K. Ogundeji1 and O. Abass2 

1Department of Mathematics, University of Lagos, Nigeria 
2Department of Mathematics and Computer, Bells University, Ota, Nigeria 

*Corresponding author: jonyeka-ubaka@unilag.edu.ng, rogundeji@unilag.edu.ng 

 

Received:   September 23, 2020      Accepted: November 13, 2020 

Abstract:  This paper evaluated and compared the performance of a family of smoothing models such as autoregressive 

integrated moving average (ARIMA) models andHolt’s exponential smoothing methods: Additive and 

multiplicative; to forecast the daily confirmed coronavirus (COVID-19) cases in Nigeria for the sampled period. 

The predictive capabilities were compared in terms of forecast accuracy measures, Akaike information criterion 

and Schwarz Bayesian information criterion based on the validated data set. The Holt’s linear exponential 

smoothing model with parameter    and  was found to have best described the data having the lowest 

ranked error statistics in an out of sample performance among other exponential smoothing models while the 

autoregressive integrated moving average (ARIMA (0, 1, 1)) with the smallest AIC was selected as the best. 

The forecast values of the two selected models show that the COVID-19 pandemic will live with us for a long 

term. The forecast results imply that the government and citizenry will and must adhere to preventive measures 

while going about their normal businesses. 
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Introduction 

A virus-caused infectious disease called Coronavirus 

(COVID-19) was declared by the World Health 

Organization (WHO) on January 30, 2020 as a global 

pandemic that require public health emergency of 

international scope. Coronavirus was first recorded in 

Nigeria on February 29, 2020. As of July 6, 2020, COVID-

19 has spread to over 250 countries and territories causing 

over 11.4 million infections with 534,780 deaths (Johns 

Hopkins University, 2020). Nigeria has recorded a total of 

28,711 confirmed cases of COVID-19 with 645 deaths and 

11,665 discharged spreading across 35 states and the FCT 

(NCDC, 2020). In every epidemic, some individuals become 

sick, and some may die, whereas others may recover from 

illness and still others show no signs or symptoms of 

disease, while nonetheless carrying it and being potential 

sources of infection. The COVID-19 virus does not move 

except if it is moved by human beings. This leads the WHO, 

in conjunction with Nigeria Centre for Disease Control and 

Ministry of Health to come with the approaches to stop or 

minimize the spread of COVID-19. Some of the approaches 

are wash your hands with clean water soap for 20 seconds; 

use hand sanitizers where water are not available; wear face 

masks on public places; maintain social and physical 

distancing of about 1 – 2 metres; sneeze or cough into tissue 

papers and dispose accordingly and stay at home. Despite 

the regular orientation on preventive measures, the 

lockdown of international and inter-state movements, no 

gathering of more than 20 people, closure of schools and 

worship centres, viewing centres and markets, the surge of 

COVID-19 infection kept increasing in exponential manner. 

This necessitates for adequate planning. 

Planning for future events is an integral aspect of operating 

any business. Planning allows actions to be taken that will 

meet lead time requirements and create a competitive 

operation. The process of planning, however, assumes that 

forecasts of the future are readily available. Government and 

health sector, in particular, must anticipate future surge for 

Coronavirus cases, demand for health products or services 

and plan to provide facilities and resources necessary to 

meet that demand. Forecasting is the first step in planning. It 

is one of the most important tasks, as many other 

organizational decisions are based on a forecast of the 

future. The quality of these decisions can only be as good as 

the quality of the forecast upon which they are based. This 

paper, therefore, evaluated and compared the performance of 

a family of smoothing models such as simple exponential 

smoothing, Holt’s linear/exponential trend and Holt’s 

damped methods: additive and multiplicative; and family of 

autoregressive integrated moving average (ARIMA) models 

to forecast the daily Coronavirus cases in Nigeria. 

 

The Model 

Exponential smoothing forecasting methods use constants that 

assign weights to current demand and previous forecasts to 

arrive at new forecasts. Their values influence the 

responsiveness of forecasts to actual COVID-19 cases and 

hence influence forecast error. In Simple Exponential 

Smoothing, observed case ( t ) is level with only random 

variations around some average.  The forecast mt  for the 

upcoming period is the estimate of average level tS  at the 

end of period t. 

1)1()(   tttttmt SSS       (1) 

Where:  , the smoothing constant, is between 0 and 1.  The 

new estimate of level may be seen as a weighted average of 

t , the most recent information of average level, and tS  the 

previous estimate of that level.  Small values of   imply that 

the revision of the old forecast, in light of the new COVID-19 

case is small; the new forecast is not very different from the 

previous one. The method requires an initial forecast tS  

which has to be either assumed or estimated.  

In Exponential Smoothing with Trend Adjustment (Double 

Exponential Smoothing), the time series exhibits a trend; in 

addition to the level component, the trend (slope) has to be 

estimated.  The forecast, including trend for the upcoming 

period 1t , is given by;  

 ttt S  1    (2)  

 

 Here, tS  is the estimate of level made at the end of period t 

and is given by;  

ttt SS )1(      (3)  
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t  
is the estimate of trend at the end of period t and is given 

by;  

11 )1()(   tttt SS   (4)  

Where:   is also a smoothing constant between 0 and 1 and 

plays a role similar to that of  . Again, small values of   

and   imply that consecutive estimates of level and trend 

components do not differ much from each other. Any revision 

in the light of the new case is small. This method requires 

estimation of the initial level component 1S  and the initial 

trend component 1  to start off the series of forecasts. 

Smoothing constants are key to successful forecasting with 

exponential smoothing, but there are no consistent guidelines 

in the forecasting literature on how they should be selected. 

There arevarious variety of notation existing in the literature 

but for continuity, the paper adapts Hyndman’s et al. (2002) 

taxonomy, as extended by Taylor (2003) in describing the 

methods.  Each method is denoted by one or two letters for the 

trend (row heading) and one letter for seasonality (column 

heading). Method N-N denotes no trend with no seasonality, 

or simple exponential smoothing (Brown, 1959). The other 

non-seasonal methods are Holt’s (1957) additive trend (A-N), 

Gardner and McKenzie’s (1985) damped additive trend (DA-

N), Pegels’ (1969) multiplicative trend (M-N), and Taylor’s 

(2003) damped multiplicative trend (DM-N). The parameters 

in the trend methods can be constrained using discounted least 

squares (DLS) to produce special cases often called Brown’s 

methods (Gardner, 2005). All seasonal methods are 

formulated by extending the methods in Winters (1960). Note 

that the forecast equations for the seasonal methods are valid 

only for a forecast horizon (m) less than or equal to the length 

of the seasonal cycle (p).  

The standard exponential smoothing as captured by Gardner 

(2005) are presented in Table 1. 

When a combined observation occurs, in the N-N equation 

we replace t with kt / , where k is the number of 

periods combined, and we replace  with the expression

k)1(1  . This adjustment assumes that the data are 

spread evenly over the combined periods. Each exponential 

smoothing method in Table 1 is equivalent to one or more 

stochastic models.  The possibilities include regression, 

ARIMA, and state-space models.All linear exponential 

smoothing methods have equivalent ARIMA models. The 

easiest way to see the non-seasonal models is through the 

DA-N method, which contains at least six ARIMA models 

as special cases (Gardner and McKenzie, 1988). If 

10  , the DA-N method is equivalent to the ARIMA 

(1, 1, 2) model, which can be written as: 

tt e])1()1(1[)1)(1( 2 
  (5) 

 

We obtain an ARIMA (1, 1, 1) model by setting 1 .  

With 1  , the model is ARIMA  

(1, 1, 0).  When 1 , we have a linear trend (A-N) and the 

model is ARIMA (0, 2, 2): 

tt e])1()2(1[)1( 22  
    (6) 

 

When 0 , we have simple smoothing (N-N) and the 

equivalent ARIMA (0, 1, 1) model: 

 tt e)]1(1[)1( 
            (7) 

 

The ARIMA (0, 1, 0) random walk model can be obtained 

from (7) by choosing 1 .  ARIMA-equivalent seasonal 

models for the linear exponential smoothing methods exist, 

although most are so complex that it is unlikely they would 

ever be identified through the Box-Jenkins methodology. That 

is, each of the linear exponential smoothing models with 

additive errors has an ARIMA equivalent.  However, the 

linear models with multiplicative errors and the nonlinear 

models are beyond the scope of the ARIMA class.   

For the A-A method, an analytical variance expression was 

derived by Yar and Chatfield (1990), who assumed only that 

one-step-ahead errors are uncorrelated.  But for this to be true, 

the equivalent ARIMA model must be optimal. The first class 

includes linear models with additive errors and ARIMA 

equivalents, corresponding to the N-N, A-N, DA-N, N-A, A-

A, and DA-A methods. Simple smoothing (N-N) is certainly 

the most robust forecasting method and has performed well in 

many types of series not generated by the equivalent ARIMA 

(0, 1, 1) process. Such series include the very common first-

order autoregressive processes and a number of lower-order 

ARIMA processes (Cogger, 1973; Tiao and Xu, 1993).  

Bossons (1966) showed that simple smoothing is generally 

insensitive to specification error, especially when the miss-

specification arises from an incorrect belief in the stationarity 

of the generating process.  Related work by Hyndman (2001) 

shows that ARIMAmodel selection errors can inflate MSEs 

compared to simple smoothing.  Hyndman simulated time 

series from an ARIMA (0, 1, 1) process and fitted a restricted 

set of ARIMA models of order (0, 1, 1), (1, 1, 0), and (1, 1, 1), 

each with and without a constant term.  The best model was 

selected using Akaike’s information criterion (AIC) (Akaike, 

1970) and Bayesian information criterion (BIC) (Schwarz, 

1978). The ARIMA forecast mean square errors (MSEs) were 

significantly larger than those of simple smoothing due to 

incorrect model selections, a problem that became worse 

when the errors were non-normal. Simple smoothing has done 

especially well in forecasting aggregated economic series with 

relatively low sampling frequencies. Rosanna and Seater 

(1995) show that such series not generated by an ARIMA (0, 

1, 1) process often can be approximated by an ARIMA (0, 1, 

1) process.  This finding has been misinterpreted by some 

researchers in that the series were sums of averages over time 

of data generated more frequently than the reporting interval. 

The effects of averaging and temporal aggregation were to 

destroy information about the generating process, producing 

series for which the ARIMA (0, 1, 1) process was merely an 

artifact.  Much the same problem can occur in company-level 

data.For example, simple exponential smoothing was a very 

competitive method in Schnaars’ (1986) study of annual unit 

sales series for a variety of products. Satchell and Timmerman 

(1995) derive an explicit formula for weights when the time 

series has a finite history and give a different explanation for 

the performance of simple smoothing in economic time series. 

They found that exponentially declining weights are 

surprisingly robust as long as the ratio of the variance of the 

random walk process to the variance of the noise component 

is not exceptionally small.Simple smoothing was shown to be 

equivalent to a random walk with noise model, assuming that 

the process began an infinite number of periods ago (Muth, 

1960). 
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Table 1: Standard exponential smoothing methods (Gardner, 2005) 
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Where:   is the smoothing parameter for the level of the series;  , smoothing parameter for the  trend;  , smoothing 

parameter for seasonal indices;  , autoregressive of damping parameter; 
tS , smoothed level of the series, computed after t

 

is observed; also, the expected value of the data at the end of the period t in some models. t , smoothed additive trend at the end 
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of period t; 
tR , smoothed multiplicative trend at the end of period t;

t , smoothed seasonal index at the end of period t. It can be 

additive or multiplicative. 
t , observed value of the time series in period t; m, number of periods in the forecast lead-time; p, 

number of periods in the seasonal cycle; )(ˆ mt , forecast for m periods ahead from origin t and te  is one-step-ahead forecast 

error, )1(ˆ
1 ttte . Note that )(met

 should be used for other forecast origins. 

 

 

Methodology 

Holt's two-parameter model, also known as linear 

exponential smoothing, is a popular smoothing model for 

forecasting data with trend. Holt's model has three separate 

equations that work together to generate a final forecast. The 

first is a basic smoothing equation that directly adjusts the 

last smoothed value for last period's trend. The trend itself is 

updated over time through the second equation, where the 

trend is expressed as the difference between the last two 

smoothed values. Finally, the third equation is used to 

generate the final forecast. Holt's model uses two 

parameters, one for the overall smoothing and the other for 

the trend smoothing equation. The method is also called 

double exponential smoothing or trend-enhanced 

exponential smoothing. 

The paper adapts method-selection procedures using time 

series characteristics proposed by Gardnerand McKenzie 

(1988), Shah (1997), and Meade (2000). The aim is not to 

improve accuracy but to avoid fitting a damped trend when 

simpler methodsserve just as well.  The method selection 

rules are summarized in Table 2: 

 

Table 2: Method selection rules 

CASE Series yielding minimum variance Method 

A 
t  N-N 

B 
t )1(  DA-N 

C 
t 2)1(  

A-N 

D 
t

p  )1(  
N-M 

E 
t

p  )1)(1(  
DA-M 

F 
t

p  )1)(1( 2
 

A-M 

 

In Case A, the N-N method is suggested if differencing 

serves only to increase variance and  trend or seasonal 

pattern are not allowed. In Case B, the DA-N method is 

recommended because it is equivalent to an ARIMA process 

with a difference of order 1 as can be seen in our empirical 

data analysis of Section 4. Although the N-N method is also 

equivalent to an ARIMA process with a difference of order 

1, the DA-N method is suggested for reasons of robustness.  

In Case C, the A-N method is justified by its equivalence to 

an ARIMA process with a difference of order 2. A 

multiplicative trend is another possibility in Case C; 

although Gardner and McKenzie (1988) argue that such 

trends are dangerous in automatic forecasting systems. In 

Cases D, E, and F, a seasonal method is called for because a 

seasonal difference reduces variance. Forecast accuracy was 

slightly better than the DA-N method applied to all 

nonseasonal series, with the DA-M method applied to all 

seasonal series. We also estimate discriminant scores from 

standard statistics such as autocorrelations and coefficients 

of skewness and kurtosis. The sample accuracy results are 

combined with discriminant scores to determine the best 

method for the daily recorded confirmed coronavirus cases 

in Nigeria within the sampled period. 

The DA-N method can be used to forecast multiplicative 

trends with the autoregressive or damping parameter   

restricted to the range 1< < 2, a method sometimes called 

“generalized Holt.” This collects special versions of the 

standard Holt-Winters methods to cope with missing or 

irregular observations, irregular update intervals, planned 

discontinuities, series containing a fixed drift, and series 

containing two or more seasonal cycles.  We can also simplify 

the A-A method by merging the level and seasonal 

components, and adapt several methods to multivariate series. 

If the time between updates of the N-N method is irregular, 

the data for several periods may be reported as a combined 

observation.  Obviously, the smoothing parameter should be 

increased to give more weight to combined observations. Due 

to the fundamental importance of time forecasting in many 

practical situation, proper care should be taken while selecting 

a particular model, to estimate forecast accuracy and to 

compare different models. The following indicators measure 

the forecasting results:  

Root mean squared error (RMSE) = 


n

t

te
n 1

21
;  

Mean absolute error (MAE) = 


n

t

te
n 1

1
;  

Mean percentage error (MPE) = 





n

t t

te

n 1

100
1

 and 

Mean absolute percentage error (MAPE) = 





n

t t

te

n 1

100
1

.  

 

The criteria included the Akaike information criteria (AIC) 

and Bayesian information criteria (BIC) that penalize the 

likelihood of the data by a function of the number of 

parameters in the model. This is completely automatic 

expert system that selects from a different set of candidate 

methods: the N-N and DA-N methods, classical 

decomposition, and a combination of all candidates.   

 

Results and Discussion 

The paper adapts Box-Jenkins strategyto analyze the daily 

recorded confirmed COVID-19 cases in Nigeria from 

February 29, 2020 to July 6, 2020 (NCDC, 2020). First, we 

plot the series as presented in Fig. 1 and look for trend, 

seasonal variation, outliers, and changes in structure that 

may be slow or sudden and may indicate that exponential 

smoothing is not appropriate in the first place. The plot 

displays a non-stationary upward trending behavior in the 

recorded daily coronavirus diseases within the sampled 

period. This non-stationarity is further depicted by the slow 

decreasing nature of autocorrelation function (ACF) and 

partial autocorrelation function (PACF) plotted in Figs. 2 

and 3.  
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Fig. 1: Time plot of the number of confirmed cases in 

Nigeria 
 

 
Fig. 2: ACF of original series    

 

 
Fig. 3: PACF of original series  

 

We also examine for any outliers, consider making 

adjustments, and then decide on the form of the trend and 

seasonal variation. At this point, we consider the possibility 

of transforming the data, either to stabilize the variance or to 

make the seasonal effect additive. The original data of daily 

recorded confirmed COVID-19 cases were transformed by 

taking the first difference and plotted in Fig. 4. The plot 

shows an estimated mean level of zero and an approximately 

constant variance. The autocorrelation function of the 

differenced series plotted in Fig. 5 decreases fast after lag 

one indicating a moving average model of order one 

(MA(1)). The partial autocorrelation function in Fig. 6 also 

decreases fast after lag one indicating an autoregressive 

model of order one (AR(1)). The PACF also spikes on lag 9 

and beyond pointing that autoregressive moving average 

(ARMA) model should be considered as well as competing 

models. 

 

 
Fig. 4: 1st difference of the number of confirmed cases in 

Nigeria [(1-B)^1] 

 

 
Fig. 5: ACF of Difference (1-B)^1    

 

 
Fig. 6: PACF of Difference (1-B)^1 

 

Table 3: Model comparison 
Model DF Variance AIC SBC RSquare –2LogLH 

ARI(1, 1) 101 5135.7907 884.03088 889.30033 0.797 878.39221 

IMA(1, 1) 101 4600.3442 872.6903 877.95976 0.818 867.49541 

ARIMA(1, 1, 1) 100 4613.1156 874.97585 882.88004 0.819 866.69847 

Linear (Holt) 

Exponential 

Smoothing 

100 4667.2096 865.7283 870.97824 0.815 865.65497 

 

Given Table 3 evidences, all four models appear to be 

correctly specified. We, however, choose ARIMA (0, 1, 1) 

model among the ARIMA models and linear (Holt) 

exponential smoothing models asmodels for forecasting due 

to lower values parameter diagnostics anda higher probability 

of the residuals being serially uncorrelated.  

The models are estimated are presented in Table 4. In the 

linear non-seasonal methods, the parameters are always 

invertible if they are chosen from the usual [0, 1] interval. 

Invertible parameters create a model in which each forecast 

can be written as a linear combination of all past 

observations, with the absolute value of the weight on each 

observation less than one, and with recent observations 

weighted more heavily than older ones. Non-invertibility 

usually occurs when one or more parameters fall near 

boundaries, or when trend and/or seasonal parameters are 

greater than the level parameter.  

Next, we fit an appropriate method, produce forecasts, and 

check the adequacy of the method by examining the one-

step-ahead forecast errors, particularly their autocorrelation 

function. The findings may lead to a different method or a 

modification of the selected method.  For a sample of 

reasonable size, it would be useful to have results for this 

strategy as a validation of the automatic method selection 

procedures discussed above.  It does not appear that any of 
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the automatic procedures have been validated in such a 

manner. 

The accuracy of the models: N-N, A-A, DA-N and DA-M 

using root mean square error (RMSE), mean absolute error 

(MAE), mean percentage error (MAE), and mean absolute 

percentage error (MAPE) refer to as the magnitude of the 

error rate (errors) of an estimate, the smaller the value of 

these test statistics, the better the forecasts. The results of 

the evaluation of the forecasting models displayed in Table 

5. The model accuracy analysis showed that Holt’s with 

exponential trend model has the lowest ranked error rate. 

For Simple Exponential Smoothing model (N-N), the 

estimated parameter of  is approximately one, as the 

series is clearly trending over time. From the analysis, it is 

evident that rising trend of COVID-19 cases in Nigeria is 

not affected by seasonality. This is true as the Holt’s linear 

exponential trend model is the most accurate method among 

the exponential smoothing models to describe the data 

according to the RMSE (2.1756), MAE (1.2891), and MAPE 

(5.5472), while Holt’s damped multiplicative is most 

accurate according to MPE (- 1.3549). In resolving this type 

of conflicting results, we selected the least ranked value of 

the error test statistics, which is the Holt’s linear exponential 

smoothingmodel.    

For the A-A method, assuming only that one-step-ahead 

errors are uncorrelated,an analytical variance of linear 

exponential smoothingmodel equivalent to ARIMA model 

must be optimal; the width of the multiplicative prediction 

intervals depends on the time origin and can change with 

seasonal peaks and troughs. Hyndman et al. (2005b) is an 

extremely valuable reference because it contains all known 

results for variances and prediction intervals around point 

forecasts. The models are divided into three classes. The 

first class includes linear modelswith additive errors and 

ARIMA equivalents, corresponding to the N-N, A-N, DA-N, 

N-A, A-A, and DA-A methods. The second class includes 

the same models, but now the errors are assumed to be 

multiplicative to enable the variance to change with the level 

and trend of the time series.  In the third class, including the 

N-M, A-M, and DA-M methods, the variance changes with 

level, trend, and the multiplicative seasonal pattern 

(Gardner, 2005). In fitting additive seasonal models, it is 

alarming that some combinations of [0, 1] parameters fall 

within the ARIMA invertible region, yet the weights on past 

data diverge. 

 

 

Table 4: Model parameter estimates 

 
 

Table 5: Error estimation for different forecast models 

Exponential Smoothing 
Estimated errors 

Rank 
RMSE MAE MPE MAPE 

Simple Exponential Smoothing (N-N) 

9788.0  

2.3459 1. 5637 3.3218 6.0015 16 

Holt’s Exponential Additive (A-A) 

0010.0

8716.0







  

   2.1756 1.2891 -0,1849 5.4872 5 

Holt’s Damped Additive (DA-N) 

0513.0

8975.0







 96.0  

   2.3567 1. 4891 1.2893 5.511 10 

Holt’s Damped Multiplicative (DA-M) 

0010.0

8904.0







 96.0  

2.1801 1.5137 -1.3549 6.1290 15 
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Table 6: 60-day forecast of Coronavirus cases in Nigeria 

Time 
ARIMA (0, 1, 1) Linear (Holt) Exponential Smoothing Model 

Forecast Value 95% CI Lower 95% CI Upper Forecast Value 95% CI Lower 95% CI Upper 

105 536.79683 396.337127 677.256534 503.137245 369.238427 637.036062 

106 626.864722 473.571967 780.157476 513.490255 375.280838 651.699672 

107 585.066895 398.751313 771.382476 523.843265 381.037408 666.649122 

108 617.493206 414.391304 820.595109 534.196276 386.515453 681.877098 

109 608.14048 383.9397 832.341261 544.549286 391.722906 697.375665 

110 622.304201 381.809981 862.798421 554.902296 396.668084 713.136508 

111 623.231062 365.925177 880.536947 565.255306 401.359491 729.151121 

112 631.608643 359.356119 903.861166 575.608317 405.805663 745.41097 

113 635.792387 348.929365 922.655409 585.961327 410.015036 761.907617 

114 642.336744 341.810576 942.862912 596.314337 413.995858 778.632816 

115 647.552367 333.82939 961.275344 606.667347 417.75611 795.578585 

116 653.515903 327.198804 979.833003 617.020357 421.303464 812.737251 

117 659.058457 320.577847 997.539067 627.373368 424.645249 830.101487 

118 664.837972 314.636571 1015.03937 637.726378 427.788432 847.664324 

119 670.484107 308.930501 1032.03771 648.079388 430.739614 865.419162 

120 676.205318 303.651371 1048.75927 658.432398 433.50503 883.359767 

121 681.884271 298.642257 1065.12628 668.785409 436.090557 901.48026 

122 687.58701 293.948857 1081.22516 679.138419 438.501725 919.775112 

123 693.27636 289.508652 1097.04407 689.491429 440.743733 938.239125 

124 698.973247 285.324517 1112.62198 699.844439 442.821465 956.867414 

125 704.665891 281.366425 1127.96536 710.19745 444.739504 975.655395 

126 710.360923 277.626062 1143.09578 720.55046 446.502159 994.598761 

127 716.054612 274.085649 1158.02357 730.90347 448.11347 1013.69347 

128 721.749056 270.735064 1172.76305 741.25648 449.577238 1032.93572 

129 727.443075 267.56189 1187.32426 751.609491 450.897032 1052.32195 

130 733.137334 264.556739 1201.71793 761.962501 452.07621 1071.84879 

131 738.831458 261.710036 1215.95288 772.315511 453.117933 1091.51309 

132 744.525657 259.013636 1230.03768 782.668521 454.02518 1111.31186 

133 750.219814 256.459753 1243.97988 793.021531 454.800756 1131.24231 

134 755.913995 254.04143 1257.78656 803.374542 455.447314 1151.30177 

135 761.608163 251.752157 1271.46417 813.727552 455.967357 1171.48775 

136 767.302338 249.585986 1285.01869 824.080562 456.363254 1191.79787 

137 772.996508 247.537381 1298.45564 834.433572 456.637248 1212.2299 

138 778.690681 245.601225 1311.78014 844.786583 456.791465 1232.7817 

139 784.384853 243.772753 1324.99695 855.139593 456.827922 1253.45126 

140 790.079026 242.047533 1338.11052 865.492603 456.748538 1274.23667 

141 795.773198 240.421426 1351.12497 875.845613 456.555135 1295.13609 

142 801.46737 238.890562 1364.04418 886.198624 456.249449 1316.1478 

143 807.161543 237.451319 1376.87177 896.551634 455.833135 1337.27013 

144 812.855715 236.100296 1389.61113 906.904644 455.307772 1358.50152 

145 818.549887 234.834299 1402.26547 917.257654 454.674869 1379.84044 

146 824.244059 233.650323 1414.8378 927.610665 453.935868 1401.28546 

147 829.938232 232.545534 1427.33093 937.963675 453.09215 1422.8352 

148 835.632404 231.517258 1439.74755 948.316685 452.145038 1444.48833 

149 841.326576 230.562969 1452.09018 958.669695 451.095801 1466.24359 

150 847.020749 229.680277 1464.36122 969.022705 449.945657 1488.09975 

151 852.714921 228.866917 1476.56292 979.375716 448.695776 1510.05566 

152 858.409093 228.120741 1488.69744 989.728726 447.347285 1532.11017 

153 864.103265 227.439712 1500.76682 1000.08174 445.901267 1554.26221 

154 869.797438 226.82189 1512.77299 1010.43475 444.358766 1576.51073 

155 875.49161 226.265433 1524.71779 1020.78776 442.72079 1598.85472 

156 881.185782 225.768585 1536.60298 1031.14077 440.988311 1621.29322 

157 886.879955 225.329672 1548.43024 1041.49378 439.162266 1643.82529 

158 892.574127 224.947097 1560.20116 1051.84679 437.243563 1666.45001 

159 898.268299 224.619336 1571.91726 1062.1998 435.23308 1689.16652 

160 903.962471 224.344932 1583.58001 1072.55281 433.131666 1711.97395 

161 909.656644 224.122492 1595.1908 1082.90582 430.940144 1734.87149 

162 915.350816 223.95068 1606.75095 1093.25883 428.659311 1757.85835 

163 921.044988 223.82822 1618.26176 1103.61184 426.289941 1780.93374 

164 926.739161 223.753886 1629.72443 1113.96485 423.832785 1804.09691 
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Table 6 list a 60-day period of confirmed COVID-19 cases in 

Nigeria forecast values and the 95% confidence interval 

estimates of ARIMA (0, 1, 1) and linear (Holt) exponential 

smoothing models respectively. Estimate of confirmed 

COVID-19 cases from day to day are close to one another. 

Confidence intervals for both forecast values have widths of 

0.10 or 0.16 in all days showing remarkable precision of the 

forecast. The forecast values of the two selected models 

show that the COVID-19 pandemic will live with us for a 

long term.  For a stationary series and model, the forecasts of 

future values will eventually converge to the mean and then 

stay there. For the purpose of the study, the applied ARIMA 

models remain the most suitable statistical tool since the data 

they are applied on are not volatile as obtainable with high 

frequency data such as financial data. These stylized volatile 

data are captured with autoregressive conditional 

heteroskedasticity (ARCH) models proposed by Engle (1982). 

The ARIMA models (being a crucial forecasting tool) are 

equally adopted in identifying parameter orders in generalized 

autoregressive conditional heteroskedasticity GARCH (p, q) 

models used in empirical applications of financial data 

(Bollerslev, 1986). The application of exponential smoothing 

to volatility forecasting is very different to the usual 

exponential smoothing applications.  With financial returns, 

the mean is often assumed to be zero or a small constant 

value, and attention turns to predicting the variance. In the 

additive seasonal methods, it is not necessary to renormalize 

the seasonal indices if forecast accuracy is the only concern, 

but this is rarely the case in practice when repetitive forecasts 

are made over time. Forecasting methods require regular 

maintenance, a job that is easier to accomplish when the 

method components can be interpreted without bias.  

 

 
Fig. 6: ARIMA (0, 1, 1) forecast of COVID-19 cases  

 

 

 
Fig. 7: Linear (Holt) exponential smoothing model forecast 

of COVID-19 cases 

 

 

In Figs. 6 and 7, we observe that at short forecast horizons, the 

residual random noise term dominates while as the horizon 

increases, the importance of noise term is superseded by 

sampling error. 

 

Conclusion 
The ARIMA models are appropriate for large sample greater 

than 42 data points and the selected data are not stochastically 

volatile while exponential smoothing methods are used in the 

situations for which they are appropriate (simple exponential 

smoothing where there is no underlying trend and double 

exponential smoothing where there is an underlying linear 

trend), along with good starting forecasts, the best smoothing 

constants tend to be very small, if not zero.  Significantly 

large smoothing constants signal the presence of either trend 

(simple exponential smoothing) or changes in trend (double 

exponential smoothing). This is a strong argument for the use 

of adaptive smoothing methods – methods that monitor 

forecast errors continuously and change the smoothing 

constants to keep them within predetermined limits – and 

more coverage of them in forecasting classes.  

The empirical results of optimal smoothing constants seem to 

suggest the following: When the initial forecast is good,   

values will very often be zero.  In fact, small non-zero values 

of  are indicative of local trends.  Larger non-zero values of 

  are indicative of sustained trends which might be better 

accounted for with a technique, like double exponential 

smoothing; Large values of the smoothing constants are 

certainly possible and should not be rejected without detailed 

examination of the underlying series or of the quality of the 

initial forecasts used; When there is a linear trend in the data, 

the performance of double exponential smoothing depends on 

the initial estimates of the level and trend components. Where 

these are good,   and  will be very small.  This is true of 

small as well as large series.  Larger values might be 

indicative of poor initial estimates of level and trend.  The 

impact of poor initial forecasts is felt less on longer series than 

on smaller ones.  The values of   and   decrease with 

series length; When there is a nonlinear trend in the data, the 

results are mixed and not easily generalizable.  The best 

values of   and   depend on the particular kind of 

nonlinearity involved. The best approach is to graph the time 

series and pick appropriate starting values before finding the 

optimal values of  and . 
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